r= (3cos2t)i+(3sin2t)j où t est exprimé en mètre et t, en secondes. a. Démontrez que la trajectoire de la particule décrit un cercle d'un rayon de 3m centré à l
Physique/Chimie
toutpuissantdieu
Question
r= (3cos2t)i+(3sin2t)j où t est exprimé en mètre et t, en secondes.
a.
Démontrez que la trajectoire de la particule décrit un cercle d'un rayon de 3m centré à l'origine. (Indice: soit têta=2t)
b.
Calculez le vecteur vitesse et le vecteur accélération.
c.
demontrez que le vecteur accélération est toujours orienté vers l'origine(à l'opposé de r) et que sa grandeur est v²/r.
a.
Démontrez que la trajectoire de la particule décrit un cercle d'un rayon de 3m centré à l'origine. (Indice: soit têta=2t)
b.
Calculez le vecteur vitesse et le vecteur accélération.
c.
demontrez que le vecteur accélération est toujours orienté vers l'origine(à l'opposé de r) et que sa grandeur est v²/r.
1 Réponse
-
1. Réponse croisierfamily
Réponse :
Explications :
■ BONJOUR !
■ (3cos2t)² + (3sin2t)² = 9 = 3²
donc la particule tourne bien en rond
suivant un Cercle de Rayon 3 mètres .
■ Périmètre de la trajectoire circulaire :
π * Diamètre = π * 6 ≈ 18,85 mètres .
■ temps pour effectuer 1 tour :
π secondes .
■ vitesse :
v = distance/temps ♥
= 6 mètres/seconde
( = 21,6 km/h ) .
■ accélération :
a = v²/R = 36/3 = 12 m/s² .