Mathématiques

Question

Dans les cas suivants, trouver une relation f et f’ indépendante de x :
a) f(x) = sin (ax + b)
b) f(x) = sin^2 x

1 Réponse

  • Réponse :a) f'(x)² = a² (1 - f(x)²)

    b) f'(x)² = 4 f(x) (1 - f(x))

    Explications étape par étape :

    a) on a deux fonctions : u = cos et v = ax + b

    Formule des fonctions composées : ( u ° v)' = u'(v) x v'

    f'(x) = -a cos(ax + b)

    f'(x)² = a² cos²(ax + b) = a² (1 - sin²(ax + b) = a² (1 - f(x)²)

    b) f(x) = sin²(x) donc: u = sin et v = x²

    Même formule des fonctions composées :

    f'(x) = 2sin (x) cos(x)

    f'(x)² = 4 sin²x cos²x = 4 sin²x (1 - sin²x) = 4 f(x) (1 - f(x))  

Autres questions